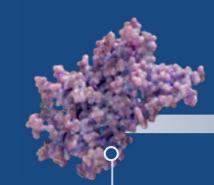
THE SCIENCE BEHIND PROTAC® PROTEIN DEGRADERS

Directly targeting disease-causing proteins and inducing their elimination by harnessing the body's natural protein disposal system—the ubiquitin-proteasome system. PROTAC® protein degraders have many potential applications beyond traditional small molecule inhibitors. Ubiquitin The E3 ligase facilitates the tagging of the E3 Ligase target protein PROTAC® protein degraders with ubiquitin have a unique molecular design that allows them to recruit an E3 ligase to a target protein The ubiquitinated target protein is recognized Target protein and **degraded** by the proteasome PROTAC® protein degraders can be recycled and can Protein Degrader bind additional proteins

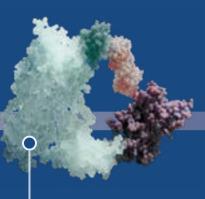
THE SCIENCE BEHIND

PROTAl The UPS—A Natural Protein Disposal System

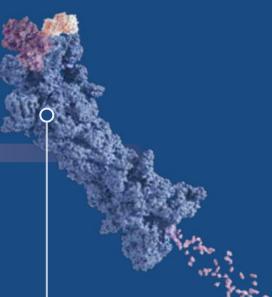
Directly targeting the body's natura


The ubiquitin-proteasome system (UPS) is involved in many basic cellular processes, including regulation of

Cell cycle


- Immune and inflammatory responses
- Signaling pathways •
- Development and differentiation

The UPS induces DEGRADATION OF DAMAGED OR UNNEEDED PROTEINS


hav

Protein Misfolded, damaged, or unneeded

E3 Ligase Facilitates ubiquitin tagging and formation of a chain on the protein

Proteasome Recognizes ubiquitinated protein and then degrades it

legraders ial applications

ated target ognized by the

See how a PROTAC® protein degrader is uniquely designed to harness the UPS

THE SCIENCE BEHIND PROTAC® PROTEIN DEGRADERS

Directly targeting disease-causing proteins and inducing their elimination by harnessing iquitin-proteasome system the body's no Unique Molecular Design graders applications mall A PROTAC® protein degrader is a uniquely designed small molecule composed of three parts PR0 A binding domain A binding domain have for the target protein for the specific E3 ligase that E3 li ed target anized A linker ov the that connects and positions the two domains See how this design facilitates targeted protein degradation

THE SCIENCE BEHIND PROTAC® PROTEIN DEGRADERS

Directly targeting disease-causing proteins and inducing their elimination by harnessing the body's

Targeted Protein Degradation

in-proteasome system

raders pplications

target

nized

the

PROTAC® protein degraders directly induce the ubiquitin-proteasome system (UPS) to eliminate the target protein.

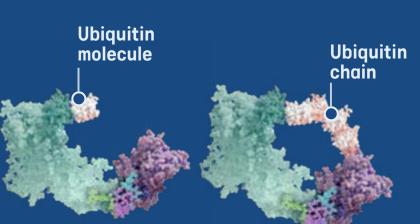
Recruitment of the UPS

PR

hav

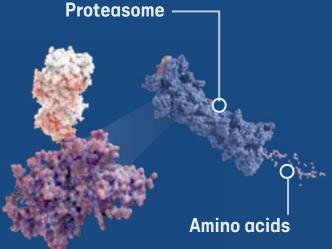
tha

E3


Target p

Ternary Complex The unique design results in the formation of a ternary complex consisting of the PROTAC® molecule, the target protein and the E3 ligase

E3 ubiquitin ligase Target protein **PROTAC®** protein degrader


Ubiquitin Tagging

The complex triggers the E3 ligase to facilitate the transfer of ubiquitin molecules to the target protein to form a chain

Degradation

The ubiquitinated target protein will be directed to the proteasome where it is subsequently degraded

See how this process repeats

REFERENCES T

THE SCIENCE BEHIND PROTA

ARVINAS

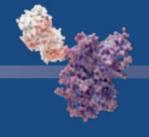
Repeat Degradation

Directly targeting the body's natura

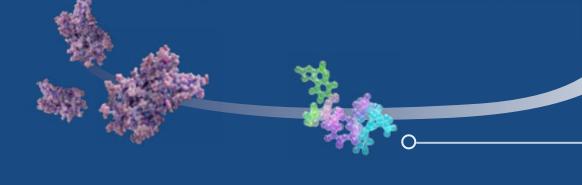
The unique iterative activity of the PROTAC® protein degrader allows for repeat degradation events.

graders applications

hav


E3

Target p


Once the protein is tagged for

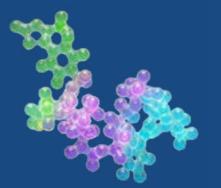
degradation, the PROTAC® protein

degrader is released

ed target nized y the

The PROTAC® protein degrader is able to bind additional molecules of the target protein

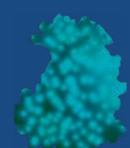
A single PROTAC® degrader molecule is able to induce tagging and subsequent degradation of multiple molecules of the target protein—up to hundreds of times.



THE SCIENCE BEHIND

PROTAC® PROTE

Directly targeting disease-co the body's natural protein dis

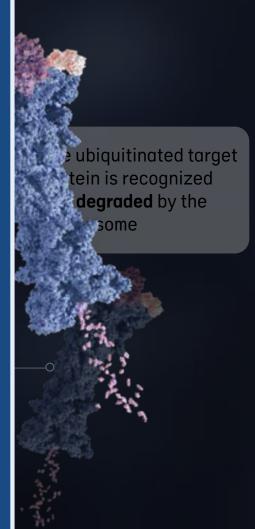


The PROTAC® Protein Degrader Difference

PROTAC® protein degraders can be developed to target multiple types of disease-causing proteins, including those that were previously considered undruggable due to a lack of a suitable active site or due to competitive inhibition.

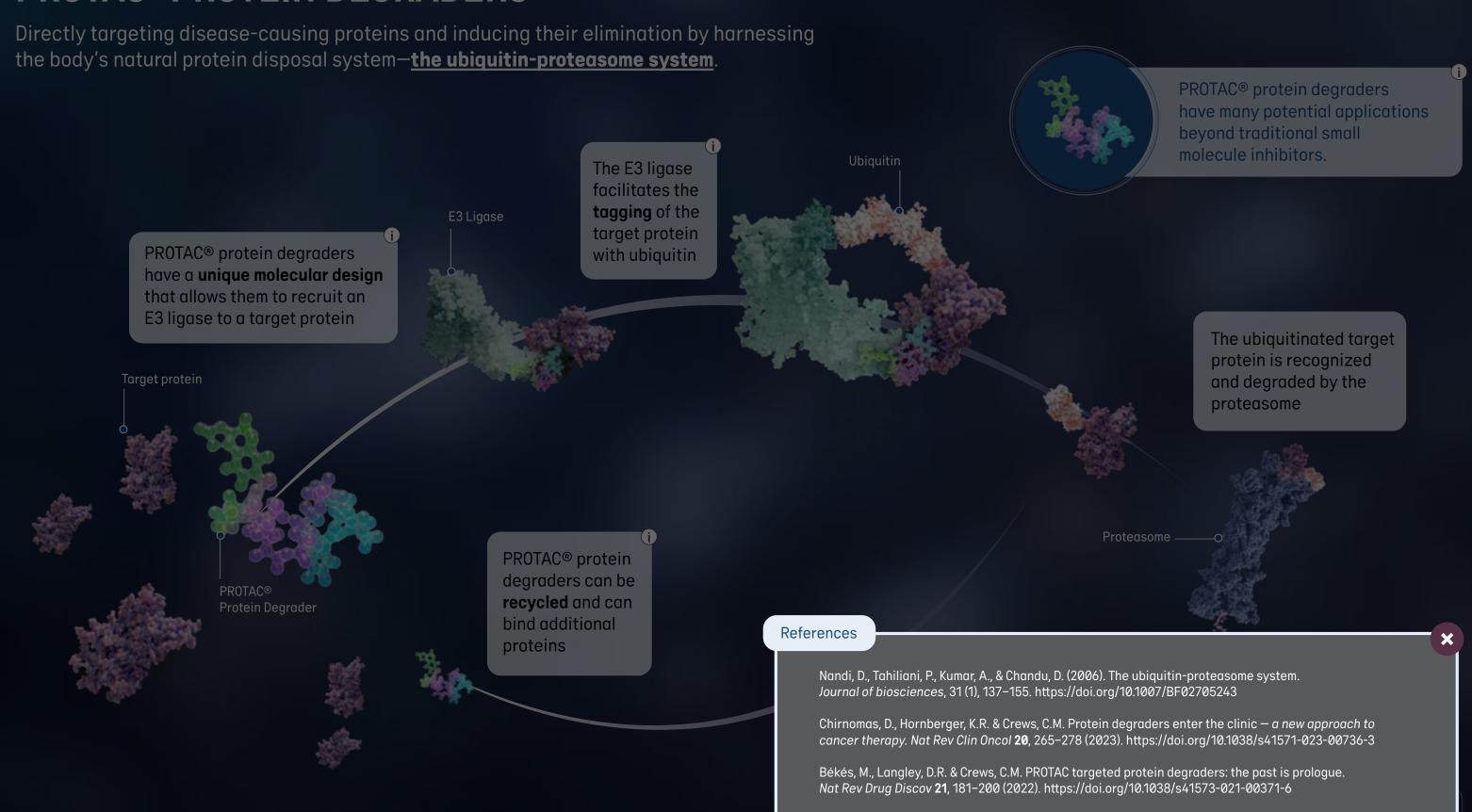
PROTAC® Protein Degraders have many potential applications beyond traditional small molecule inhibitors.

Traditional Small Molecule Inhibitors



PROTAC® Protein Degraders

Typically inhibit enzymatic functions	Eliminate the target protein and its functions
Require an active or allosteric site for binding	Do not need to bind an active or allosteric site for target protein elimination
Require tight and often prolonged binding	Do not require tight and prolonged binding and therefore may eliminate target proteins after only weak and transient interactions
Typically do not have an iterative mechanism	Have iterative mechanism of action that allows for removal of target proteins regardless of protein levels


ROTAC® protein degraders ave many potential applications eyond traditional small nolecule inhibitors.

THE SCIENCE BEHIND PROTAC® PROTEIN DEGRADERS

