Vepdegestrant, an Oral PROTAC, is a Robust ER Degrader Leading to Improved ER Degradation and **Antitumor Activity Relative to SERDs in Preclinical ER+ Breast Cancer Models**

Madeline A. Dorso, Christopher Kuhlberg, Jennifer Pizzano, XiaoZhe (Janet) Wang, Jessica Teh

Arvinas Operations, Inc. New Haven, CT, USA

Objective

 To evaluate estrogen receptor (ER) degradation and antitumor activity by vepdegestrant, an investigational PROteolysis TArgeting Chimera (PROTAC) ER degrader, FDA-approved selective estrogen receptor degraders (SERDs; elacestrant, imlunestrant, and fulvestrant), or investigational oral SERDs (giredestrant, camizestrant, and amcenestrant) in preclinical models.

Key Findings

- Vepdegestrant induced greater maximal ER degradation than investigational oral SERDs, imlunestrant or elacestrant in vitro.
- Vepdegestrant led to greater ER degradation and antitumor activity in the MCF7 cell-line derived xenograft (CDX) model compared with fulvestrant.
- Vepdegestrant resulted in greater ER degradation and antitumor activity than fulvestrant or elacestrant in ER1 gene (ESR1)-mutated preclinical models.

Conclusions

- Consistent with other reports,^{1,2} vepdegestrant induced greater maximal ER degradation in vitro than elacestrant or fulvestrant in wild type (WT) ER+ breast cancer cell lines.
- Vepdegestrant also demonstrated greater tumor growth inhibition (TGI) and ER degradation in vivo compared with fulvestrant in a WT ER+ breast cancer CDX model.
- Vepdegestrant induced greater maximal degradation of clinically relevant ER mutants (ERY537S and ERD538G) than elacestrant or fulvestrant in vitro and in vivo and greater TGI than elacestrant or fulvestrant in an ERY537S mutant PDX model.

References

- 1. Parisian AD, et al. Mol Cancer Ther. 2024;23(3):285-300.
- Friel D, Sandusky, Z et al. Presented at AACR; April 14-19 2023; Orlando, FL, USA. Abstract 3875.
- Gough SM, et al. Clin Cancer Res. 2024;30(16):3549-63.
- 4. Teh J, et al. Presented at SABCS; December 10-13 2024; San Antonio, TX, USA. Poster P3-01-16.
- 5. Campone M, et al. N Engl J Med. 2025;393(6):556-568.

Acknowledgments

This research was funded by Arvinas Estrogen Receptor, Inc., and Pfizer, Inc. Research support was provided by Alissa Wynne, Victoria Wetherby, Elizabeth Bortolon, Emma Rousseau, John Flanagan and Monica Andreoli.

This presentation is the intellectual property of the author/presenter. Contact madeline.dorso@arvinas.com for permission to reprint and/or distribute

AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; Boston, MA, USA; October 22 - 26, 2025

Background

- Vepdegestrant is an oral PROTAC ER degrader.3 Unlike SERDs, which are competitive ER antagonists that induce conformational changes in the ER and indirectly induce ER degradation, vepdegestrant forms a trimer complex with an E3 ligase and ER, leading to direct ubiquitination and proteasomal degradation of WT ER and clinically relevant ER mutants³.
- Our previous studies demonstrated greater ER degradation and antitumor activity than fulvestrant in ERWT and ERY537S hormone insensitive breast cancer PDX models3,4
- In the Phase 3 VERITAC-2 trial, vepdegestrant treatment significantly prolonged progression-free survival compared with fulvestrant among patients with ESR1-mutated ER+/HER2- advanced breast cancer⁵.
- Here, we report preclinical ER degradation and antitumor activity of vepdegestrant compared with FDA-approved SERDs (fulvestrant, elacestrant, and imlunestrant) and investigational oral SERDs (giredestrant, camizestrant, and amcenestrant).

Figure 1: In vitro ER WT degradation with vepdegestrant and oral SERDs

Methods

Lysate generation & immunoblotting

- T47D or MCF7 cells were treated for 24 hours with indicated drugs and subsequently lysed in radioimmunoprecipitation assay (RIPA) buffer. Protein concentrations in lysates were determined using a bicinchoninic acid (BCA) assay; protein levels were normalized across samples with RIPA buffer and run on ProteinSimple™ JESS (Figure 1A, 2A) or western blots (Figure 1B, 3A).
- Blots were probed with primary antibodies for ER or β-actin and imaged using JESS or ChemiDoc systems (Bio-Rad). Western blot band intensity was quantified using ImageLab (Figure 1B) or ImageJ (Figure 3A).
- Experiments in T47D stably expressing clustered regularly interspaced short palindromic repeats (CRISPR) knock-in ER Y537S or ER D538G were conducted as previously reported³

Vehicle (vepdegestrant)

Vepdegestrant (30 mg/kg)

p values *<0.05. **<0.01. ****<0.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Days of Treatment

Vehicle Fulvestrant

(200 mg/kg)

vs vehicle, one-way ANOVA

Vehicle Vepdegestrant

ANOVA=analysis of variance; CDX=cell line-derived xenograft; ER=estrogen receptor; WT=wild type

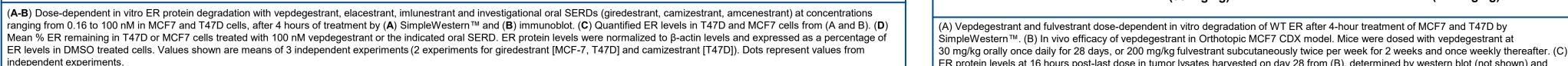
(30 mg/kg)

SimpleWestern™. (B) In vivo efficacy of vepdegestrant in Orthotopic MCF7 CDX model. Mice were dosed with vepdegestrant at

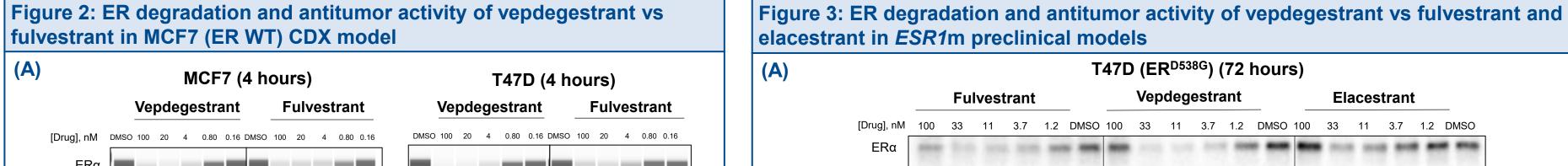
In vivo studies

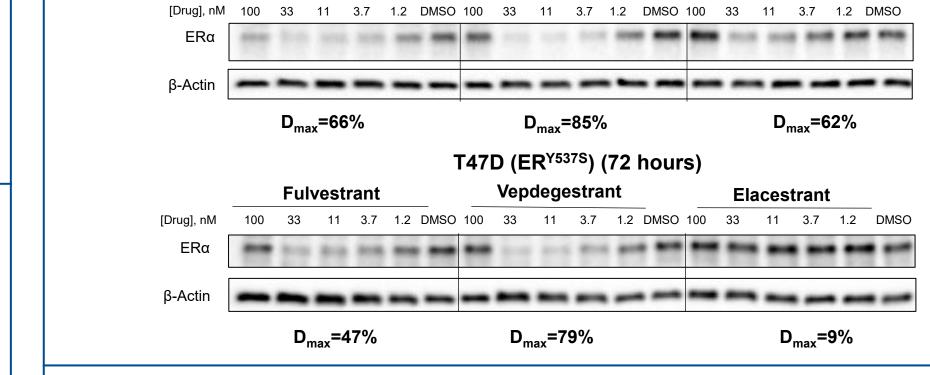
- 6-8 week old female nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were subcutaneously implanted with a 0.36-mg, 90-day release 17β-estradiol pellet; 5 million MCF7 cells in Matrigel were injected orthotopically 1-2 days later.
- When mean tumor volume reached approximately 200 mm³, mice were assigned to treatment groups and dosed with vehicle, oral vepdegestrant 30 mg/kg once daily or subcutaneous fulvestrant 200 mg/kg twice in the first week and weekly thereafter; all mice received treatment for 26 days, after which they were sacrificed and harvested tissue was snap-frozen
- Tumors were lysed in RIPA buffer and homogenized using a Qiagen Tissue Lyser II. A BCA assay was performed, and protein concentration was normalized across lysates. Protein samples were run on western blots, probed for ER or β-actin and imaged on a ChemiDoc system. Western blot band intensity was quantified using ImageLab software
- The ST941 patient-derived xenograft (PDX) model study was conducted as previously

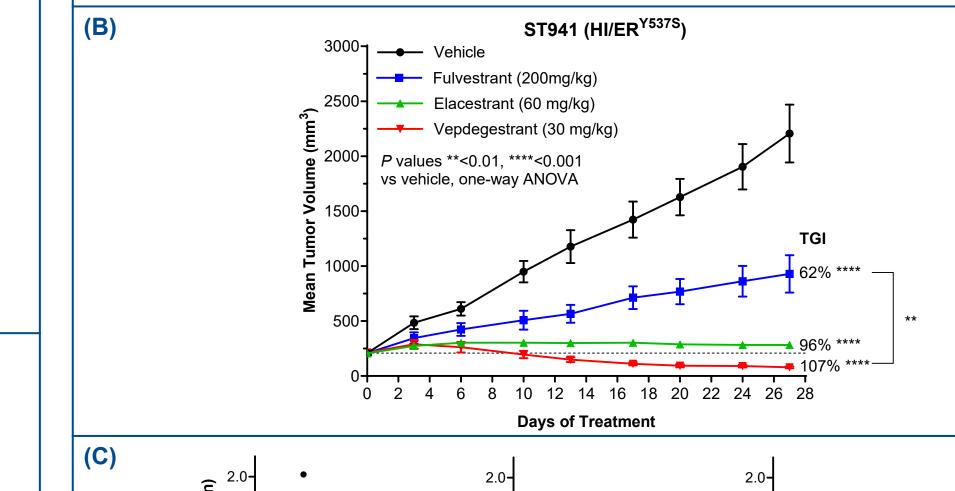
Results

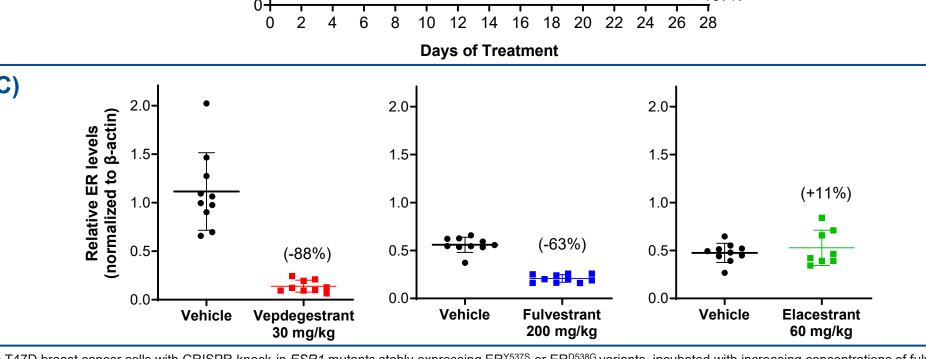

- In vitro, vepdegestrant treatment in MCF7 and T47D cell lines led to deeper degradation of WT ER (79%–86%) compared with investigational oral SERDs (55%–74.5%; **Figure 1A,C,D**), approved oral SERDs (8%–68%; **Figure 1B-D**), or fulvestrant (73%–74%; **Figure 2A**) after 4 hours of
- In the WT ER MCF7 CDX model, vepdegestrant displayed greater antitumor activity (103% TGI) than fulvestrant (54% TGI) at day 26 of treatment (Figure 2B). Vepdegestrant treatment led to a 93% decrease in ER protein levels compared to a 71% decrease with fulvestrant in tumor lysates collected at day 26 relative to vehicle-treated tumors (Figure 2C).

• Our previous studies³ demonstrated greater maximal degradation of clinically relevant ER mutants (ER^{Y537S} and ER^{D538G}; 79%–85%) compared with fulvestrant (47–66%; **Figure 3A**) or elacestrant (9–62%) in vitro.


 Vepdegestrant displayed greater antitumor activity (107% TGI) than fulvestrant (62% TGI) or elacestrant (96% TGI) in the mutant ERY537S PDX (ST941; Figure 3B).


• Mean ER protein levels decreased by 88% with vepdegestrant, decreased by 63% with fulvestrant and increased by 11% with elacestrant relative to vehicle-treated tumors in tumor lysates collected at day 27 (Figure 3C).


$D_{\text{max}}=68\%$ T47D (4 hours Vepdegestrant Elacestrant Imlunestrant Giredestrant Camizestrant Amcenestrant Concentration (nM) Concentration (nM) **T47D**



P values: *<0.05, **<0.01, ****<0.0001 vs vepdegestrant treatment, one-way ANOVA with Dunnett's multiple comparisons test ANOVA = analysis of variance; D_{max}=maximal degradation; DMSO=dimethyl sulfoxide; ER=estrogen receptor; SEM=standard error of the mean; WT=wild type.

(A) T47D breast cancer cells with CRISPR knock-in ESR1 mutants stably expressing ER^{Y537S} or ER^{D538G} variants, incubated with increasing concentrations of fulvestrant degestrant, or elacestrant for 72 hours. (B) In vivo efficacy of vepdegestrant in the START ST941/HI ERY537S mutant PDX model. Mice were dosed with oral vepdegestrant 30 mg/kg once daily for 27 days, elacestrant 60 mg/kg orally once daily for 27 days, or subcutaneous fulvestrant 200 mg/kg twice per week for 2 weeks and once weekly thereafter. (C) ER protein levels relative to vehicle control in tumor lysates of the ST941/HI ERY537S PDX efficacy study shown in B (n=10/arm). ER protein levels were determined by western blot and densitometry analysis. Figure 3 (vepdegestrant and fulvestrant data) is adapted from Gough SM, et al Clin Cancer

ER protein levels at 16 hours post-last dose in tumor lysates harvested on day 28 from (B), determined by western blot (not shown) and ANOVA=analysis of variance; CRISPR=clustered regularly interspaced short palindromic repeats; ER=estrogen receptor; ESR1=ER 1 gene; PDX=patient derived xenograft: START=South Texas Accelerated Research Therapeutics.